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Convenient Stability Criteria 
for Difference Approximations of Hyperbolic 

Initial-Boundary Value Problems. II 

By Moshe Goldberg* and Eitan Tadmor * * 

Abstract. The purpose of this paper is to extend the results of [4] in order to achieve more 

versatile, convenient stability criteria for a wide class of finite-difference approximations to 

initial-boundary value problems associated with the hyperbolic system u, = Aux + Bu + f in 

the quarter plane x > 0, t > 0. With these criteria, stability is easily established for a large 

number of examples, where many of the cases studied in the recent literature are included and 

generalized. 

0. Introduction. In this paper we sharpen and extend the results of [4] in order to 

achieve more versatile, convenient, sufficient stability criteria for a large class of 

approximations to the initial-boundary value problem associated with the hyperbolic 

system ut = Aux + Bu + f in the quarter plane x > 0, t > 0. Our difference ap- 

proximation consists of a general difference scheme-explicit or implicit, dissipative 

or not, two-level or multi-level-and boundary conditions of a wider type than 

discussed in [4]. 
As in [4], we restrict attention to the case where the outflow components of the 

principal part of the boundary conditions are translatory, i.e., determined at all 

boundary points by the same coefficients. Such boundary conditions are commonly 

used in practice; and in particular, when the boundary consists of a single point, the 

boundary conditions are translatory by definition. 
Throughout the paper we assume that the basic scheme is stable for the pure 

Cauchy problem, and that the other assumptions which guarantee the validity of the 

Gustafsson-Kreiss-Sundstrom stability theory in [5] hold for our case. We then raise 

the question of stability for our approximation in the sense of Definition 3.3 in [5]. 

Our stability analysis begins in Section 2, where we show (Theorem 2.1) that our 

entire approximation is stable if and only if the scalar outflow components of its 

principal part are stable. Thus, our global stability question is reduced to that of a 
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scalar, homogeneous, outflow problem which, as in [4], is the main subject of this 
paper. 

We state our stability criteria for the reduced problem in Theorems 3.1 and 3.2 of 
Section 3. These criteria depend both on the basic scheme and the boundary 
conditions, but very little on the intricate interaction between the two. It follows that 
our criteria provide in many cases a convenient, easily-to-check alternative to the 
well-known Gustafsson-Kreiss-Sundstrom criterion in [5]. 

We proceed in Section 3 to use our stability criteria in Theorems 3.1 and 3.2 
together with Lemmas 3.1 and 3.2 in order to establish all our previous examples in 
[4] as well as new ones. This includes a host of dissipative and nondissipative 
examples that include and generalize many of the cases studied in the recent 
literature; e.g., [1]-[10], [12]-[15]. 

As in [4], we point out that there is no difficulty in extending our stability criteria 
to two-boundary problems, since if the corresponding left and right quarter-plane 
problems are stable then, by Theorem 5.4 of [5], the original problem is stable as 
well. 

We also remark that there are no essential obstacles in extending our results to 
initial-boundary value problems with variable coefficients. 

1. The Differential Problem and the Difference Approximation. Consider the 
first-order hyperbolic system of partial differential equations 

(1.la) au(x, t)/at = Aau(x, t)/ax + Bu(x, t) = f(x, t), x > 0, t > 0, 

where u(x, t) = (u(1)(x, t),. .., u(n)(x, t))' is the unknown vector (prime denoting 
the transpose), f(x, t) = (f (1)(x, t),... ,f (n)(x, t))y a given n-vector, and A and B 
fixed n x n matrices such that A is symmetric and nonsingular. Without restriction 
we may assume that the system is given in characteristic variables, namely A is 
diagonal of the form 

(1.2) A = A, ?0 A, > 09 A,, < O, 

where A' and A" are of orders / x / and (n - 1) x (n - 1), respectively. 
The solution of (1.la) is uniquely determined if we prescribe initial values 

(1.1b) u(x,O0) = u0(x), x >, O,9 

and boundary conditions 

(1.lc) u"(0, t) = Su'(0, t) + g(t), t > 0, 

where S is a fixed (n - 1) x / coupling matrix, g(t) a given (n - /)-vector, and 

(1.3) uI = (u() ...u())', uII = (u(1+ ) . . . u(n)) 

a partition of u into its outflow and inflow components, respectively, corresponding 
to the partition of A in (1.2). 

Introducing a mesh size Ax > 0, At > 0, such that X At/Ax = constant, and 
using the notation v,(t) = v(vAx, t), we approximate (1.la) by a general, consistent, 
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two-sided, solvable basic scheme of the form 
S 

Q.1v(t + At) = E Q0v;(t - aAt) + Atbj(t), v = r, r + 1,..., 

(1.4) a 

Q0 = E Aj0Ei, EV,V = v,+1, a= -1,...,5, 
j=-r 

where the n x n coefficient matrices Aj1 are polynomials in XA and AtB, and the 
n-vectors b,(t) depend on f(x, t) and its derivatives. 

The difference equations in (1.4) have a unique solution v,(t + At) if we provide 
initial values 

(1.5) vo(,At) =ir(MAt), = 0,...,s, v =O ,1,2,..., 

and specify, at each time level t = MuAt, ,u = s, s + 1, . . ., boundary values v,(t + At), 
-=O, . . ., r - 1. These boundary values will be determined by boundary conditions 

of the form 

q 

T(V)v,(t + At) = E T,()v,(t - aAt) + Atd,(t), v = 0,..., r-1, 

(1.6a) a 

T(V) - E CJ.,)Ej' C = 

j=o 

where the n x n matrices CJ(p) depend on A, AtB and S, and the n-vectors d,(t) are 
functions of f(x, t), g(t) and their derivatives. 

We shall assume that the leading coefficients C 1) are nonsingular, thus assuring 
that the boundary conditions (1.6a) can be solved for the required boundary values 
v, (t + At), t = r - 1, . .. , 0, in terms of neighboring values of v,. 

We shall further assume that the matrices CJ(') depend weakly on B, in that B 
introduces a mere O(At) perturbation in these matrices. This assumption holds for 
all practical boundary conditions where the elements of C() are polynomials in the 
entries of AtB. 

Finally, we assume that in accordance with the partition of A in (1.2), the Cj'() can 
be written as 

(1 .6b) C(.a = I ()CI Iv 

where 

(1.6c) the CI are independent of at, 

(1.6d) the CjII are diagonal when B= 0, 

(1.6e) the - 0 when B = 0, 

and 

(1.6f) CYjI(p) = 0forj> 0 and a>-1 when B = 0. 
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Let us now set 

(1.7a) VV= d d 

according to the partition of u in (1.3); the boundary conditions (1.6a, b) then split 
into two groups: 

Tlv, I(t + At) + TI1j(v)v1i11(t + At) 
q 

7 = [T,, vv, (t - a/t) + T,II (v)vvI (t - oAt)] + Atd (t), 
(1.7b) 0=0 

m m 

I= C cI 'EJ I II(v) = E I(v)EJ 

j=0 j=0 

(r= -l,q, v r O,-1 

and 

T!1' (,v)v1(t + At) + TIIII(v)v711(t + At) 

(1.7c) - E ~[Tn ( )VV(t - cut) + Tn II(v)VvI(t - dAt)] + Atdv (t), 
0=0 

m 

Tia(P) - CJO(E, a=I,II,a=-1,..., q, v = O, ..,r-1, 
J=0 

which we refer to as the outflow and inflow boundary conditions, respectively. With 
this formulation it is a simple matter to verify that the boundary conditions in our 
previous papers [3], [4] constitute a special case of the present ones. Hence, the 
argument concluding Section 1 of [3] implies that boundary conditions of the form 
(1.6) can be constructed to any degree of accuracy. 

It should be pointed out that the outflow boundary conditions in (1.7b) are quite 
general, despite the apparent restrictions in (1.6c)-(1.6e). Indeed, (1.6c) is not much 
of a restriction since in practice the outflow boundary conditions are often transla- 
tory, i.e., determined at all boundary points by the same coefficients. In particular, if 
the numerical boundary consists of a single point, then the boundary conditions are 
translatory by definition, so (1.6c) holds automatically. The restrictions in (1.6d), 
(1.6e) pose no great difficulties either, since they are satisfied by all reasonable 
boundary conditions, where for B = 0 the CJ I' usually reduce to polynomials in the 
diagonal block Al, and the C' I I(v) vanish. Jo 

We realize that in view of the restriction in (1.6f) the inflow boundary conditions 
(1.7c) are not quite as general as the outflow ones. If, however, the boundary consists 
of a single point, then such conditions can be achieved in a trivial manner, simply by 
duplicating the analytic condition (1.lc), which gives 

vJ'(t + At) = Svj(t + At) + g(t + At). 

2. The Reduced Approximation. The difference approximation is now completely 
defined by (1.4)-(1.6), and we wish to apply to it the stability theory of Gustafsson, 
Kreiss and Sundstrom in [5]. For this purpose we assume from now on that the basic 
scheme (1.4a) is stable for the pure Cauchy problem (- x < v < x) and that the 
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other assumptions in [5] are satisfied as well. With this, the Gustafsson-Kreiss- 
Sundstrom theory holds for our case*** and we ask whether approximation 
(1.4)-(1.6) is stable in the sense of Definition 3.3 of [5]. 

In Theorem 2.1, which concludes this section, we shall reduce the above stability 
question to that of a scalar outflow approximation with homogeneous boundary 
conditions. In order to obtain this reduction, we begin, as in [3], by recalling Lemma 
10.3 of [5] which provides a necessary and sufficient determinantal stability criterion 
stated entirely in terms of the homogeneous part of the difference approximation. 
This criterion immediately implies that for stability purposes we may consider 
(1.4)-(1.6) with 
(2.1) bj(t) = d^(t) = 0. 

Moreover, since B introduces a mere O(zXt) perturbation in the matrix coeffi- 
cients A14 and CJJ") then by Theorem 4.3 of [5] our approximation is stable if and 
only if it is stable for B = 0. Setting B = 0, we get (1.6d)-(1.6f), which together with 
(2.1) proves that our stability problem is equivalent to that of the principal part of 
(1.4)-(1.6), given by a basic scheme of the form 

s 

Q_lv(t + l\t) =,Qav,(t - UAt) v = r, r + 1,.. 

(2.2a) a-0 

QC= E Ajg E1, a= Is; 
j=- 

with initial values 

(2.2b) Vv,(AAt) = Vv(AAt), IL = 0, ...,~s, v = 0,1,2,.... 
and outflow and inflow boundary conditions described, respectively, by 

q 
T11jvI(t + Ait) = E Ta 1v,,(t - az\t), v = 0,..., - 1, 

m 
(2.2c) Ti" = E C.'E, a = q 

j=O 

-II1) nonsingular, C0' 
I diagonal and independent of v, 

and 

CII II()VII(t + At) 
q 

E TI i,V)VA(t - ant) - T1"( )vV(t + At), v = 0,..., - 1, 

(2.2d) f ? 
I I(V) = E CY jI(v)E; (e = -1 

j=o 

C ' III'() nonsingular, v = 0,.. ., r -1. 

This yields: 

LEMMA 2.1 (compare [3, Lemma 2.1]). Approximation (1.4)-(1.6) is stable if and 
only if its principal part in (2.2) is stable. 

***The applicability of [5] to our approximation is further discussed in the first paragraph of Section 2 
in [3]. 
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Since now B = 0 and b,,(t) = 0, then, evidently, the basic scheme (2.2a) is 
consistent with the principal part of (1.la), i.e., with the homogeneous system 

(2.3) au(x, t)/at = Aau(x, t)/ax. 

Furthermore, B = 0 implies that the coefficients Aj1 of the basic scheme (2.2a) 
are now polynomials only in XA. Thus, the Aj1 are diagonal matrices; and putting 

A' 0 
Jo 

O All 

in accordance with the partition of A in (1.2), we may split the basic scheme (2.2a) 
and the initial values (2.2b) into two parts: 

S 

Q-Lv1,'(t + l\t) = QUvJ (t - aL\t), V = r, r + 1,..., 

(2.4a) -o 

Qa AE A',Ej = -1 ... Is, 
j=-r 

(2.4b) v,, (MLt) = iv;,(lAt), ,U = 0 ..., s, V = 0,1,2,...; 

and 

Q'Xvv'(t + L\t) = E Q'IIV,I"(t - At), V = r, r + 1,..., 

(2.5a) -o 

II=E All EJ, a=-1...s, 
j=-r 

(2.5b) VI(GL\t) = vI"(MLt), M = 0, ... Is, V = 0,1,2. 

We therefore view approximation (2.2) as made of outflow and inflow parts given by 
(2.4), (2.2c) and (2.5), (2.2d), respectively. And clearly, (2.2) is stable if and only if 
both parts are. 

We observe the the outflow approximation (2.4), (2.2c) is self-contained, so we can 
solve it to obtain the outflow values 

v '(t + lt), V = 0,1,2, .... 

But now, these outflow values determine via (2.2d) the required inflow boundary 
values 

(2.6) v1,,(t + lt), v = 0,.. .,r- . 

Hence, the stability question for approximation (2.5), (2.2d) is equivalent to that of 
the inflow basic scheme (2.5a) with arbitrary inhomogeneous boundary values. 
Therefore, the above-mentioned Lemma 10.3 of [5] implies that, without affecting 
stability, we may replace these arbitrary inhomogeneous values by homogeneous 
ones: 

(2.7) v1,,(t + lt) = ? v = 0.. .,r- l. 

This gives us the new, self-contained inflow approximation (2.5), (2.7), whose 
stability together with that of the outflow part in (2.4), (2.2c) is equivalent to the 
overall stability of approximation (2.2). 



HYPERBOLIC INITIAL-BOUNDARY VALUE PROBLEMS. II 509 

Since the A10 and 
C." 

are diagonal, we proceed to write 

Aja = diag(aja ), C ' = diag(cja ), 

and further split (2.4), (2.2c) into / scalar components, each of the form 

S 

Q_1vJ(t + At) = Q0VJ(t - aAt), v = r, r + 1, 
(2.8a) -o 

Qa ajE a0Ej, a =s 
j=-r 

(2.8b) v,(puL\t) = v,(,LAt), ,u= 0,... ,s , v = 0,1,2,..., 

q 

T_v,(t + A\t) =ET,,v,,(t - GAIt), v ,.. r -1 

(2.8c) 'g=? 
Ta= cjE j, a - q, Co(_l) 0 0 

j=O 

where the basic scheme (2.8a) is consistent with a corresponding outflow component 
of (2.3): 

(2.9) au(x, t)/at = aau(x, t)/ax, a = constant > 0. 

Similarly, we split the inflow approximation (2.5), (2.7) into n - / scalar compo- 
nents, 

S 

Q_1v,(t + ?\t) = E Qgv,(t - GALt), v = r,r + 1,..., 
(2.10a) 

-o 

Qa ajE a10E', a= -l ... s, 
j=-r 

(2.10b) v,(pLAt) = (1,,At), y =0,...,s, v = 0,1,2, 

(2.10c) v,,(t + A\t) = O, v = O, .. ., Ir-1, 

where now (2.10a) is consistent with an inflow component of (2.3): 

au(x, t)/at = aau(x, t)/ax, a < 0. 

Since approximation (2.2) is stable if and only if (2.4), (2.2c) and (2.5), (2.7) are, 
and since the latter are stable if and only if their scalar components are, we 
immediately obtain 

LEMMA 2.2 [3, Lemma 2.2]. Approximation (2.2) is stable if and only if the 
approximations in (2.8) and (2.10) are stable for all eigenvalues a > 0 of A', and 
a < 0 of A", respectively. 

With this lemma is mind we proved 

LEMMA 2.3 [3, Lemma 2.3]. The inflow scalar approximation (2.10) is uncondition- 
ally stable for every eigenvalue a < 0 of A",. 
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This lemma-due to Kreiss [7] in the case where the basic scheme is dissipative, 
explicit and two-level-combined with the previous two, finally yields the main 
result of this section: 

THEOREM 2.1 (compare [4, Theorem 1.1], [3, Theorem 2.1]). Approximation 
(1.4)-(1.6) is stable if and only if the reduced outflow scalar approximation (2.8) is 
stable for every eigenvalue a > 0 of A'. That is, approximation (1.4)-(1.6) is stable if 
and only if the scalar outflow components of its principalpart are all stable. 

3. Statement of Main Results and Examples. Theorem 2.1 implies that from now 
on we may restrict our stability study to the scalar outflow approximation (2.8). 
Hence, we begin this section by stating the following five assumptions which we 
impose throughout this paper and which guarantee the validity of the Gustafsson- 
Kreiss-Sundstrom theory in [5] for this approximation. 

Assumption 3.1 ([4, Assumption 1.11; [5, Assumption 3.1]). Approximation (2.8) is 
boundedly solvable; i.e., there exists a constant K > 0 such that for each y E 12(Ax) 
there is a unique solution w E 12(Ax) to the equations 

Q1lwp =yp, v = r,r+ 1,...; T_lwp =Yv, v =O,...,r-1, 

with llwll < Kilyll, where Q-1 and T-1 are defined in (2.8a, c), and 12(?\x) is the 
space of all grid functions w = {w)}?0 with 11w112 _xI^=Iwv,2 < xc. 

Assumption 3.2 ([4, Assumption 1.2]; [5, Assumption 5.1]). The basic scheme (2.8a) 
is stable for the pure Cauchy problem - oo < v < oo. That is, defining the basic 
characteristic function 

p 

(3.1) P (z, K) - , aj a(Z)Kj, 

J r 

where 

(3.2) aj(z) a,(-,)- , z-cff-laj<,, j -r, .... ,P, 
a=O 

then: 
(i) The basic scheme fulfills the von Neumann condition; i.e., the roots Z(K) of the 

basic characteristic equation 

P(Z, K) = 0 

satisfy 

JZ(K)J 1 forallKwithIK|- 1. 

(ii) If |Ki = 1, and if Z(K) is a root of P(z, K) with IZ(K)I = 1, then z(K) is a 
simple root of P(z, K). 

Assumption 3.3 (compare [4, Assumption 1.3] and [5, Assumption 5.4 together 
with Definition 10.1]). The basic scheme (2.8a) belongs to one of the following 
classes: 

(i) Dissipative schemes; i.e., schemes for which the roots Z(K) of P(z, K) satisfy 

IZ(K) I < 1 for all K with lK| = 1, K # 1. 

(ii) Almost-dissipative schemes, where the roots of P(z, K) satisfy 

I Z(K) I < 1 for all but a finite number of K with I K I = 1 
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(iii) Unitary schemes (also known as strictly nondissipative schemes), where the 
roots of P(z, K) satisfy 

IZ(K)|= 1 forall K with IK1= 1. 

Obviously, if the basic scheme belongs to any of these classes, then by continuity 
it fulfills the von Neumann condition in Assumption 3.2. 

Assumption 3.4 ([4, Assumption 1.4]; [5, Assumption 5.5]). 

a _,(z), ap (z) 0 0 for all IzI ->- 1. 

Assumption 3.5 [4, Assumption 1.51. 
m 

E |cj(z) I> 0 for all I z I> 1, 
j=O 

where in analogy with (3.2), 
q 

(3>3) ~~Cj(Z) _cj(_1) EZ Cja ? 

a =0 

The above five assumptions are satisfied by all reasonable approximations of the 
form (2.8). 

In order to state our new stability criteria, we define, in complete analogy with 
(3.1), the boundary characteristic function 

m 
R (Z, K) Cj C(Z) Kj? 

j=O 

where the cj(z) are given in (3.3). Putting 

R(Z, K) -P(Z, K) I + I R(Z, K) I 
we shall prove in Section 4 the following modification of Theorem 2.1 in [4]: 

THEOREM 3.1 (lst Main Theorem). Approximation (2.8) is stable if 

(3.4) R(Z,K)>0 
forall {IZ|=IKI= 1,(Z,K) # (1,1)} U{jz> 1,0< IKI< 11. 

This result is an improvement of Theorem 2.1 in [4] in that here, the (z, K) domain 
on which Q(z, K) must not vanish is a proper subset of the corresponding domain in 

[4]. 
As in [41, we shall find it convenient to divide this (z, K) domain into three disjoint 

parts, and restate Theorem 3.1 as follows: 

THEOREM 3.1' (Theorem 3.1 restated). Approximation (2.8) is stable if 

(3.5a) Q(Z, K) > O for all Izl = |K| = 1, K 0 1, 
(3.5b) 2(z, K =1) > 0 for all izi = 1, z # 1, 

(3 .5c) Qa( Z, K) > O for all lzl >, 1, 0 < I K I < 1. 

The advantage of this setting over that of Theorem 3.1 will be soon clarified by 
Lemma 3.1, in which we provide helpful sufficient conditions for each of the three 
inequalities in (3.5) to hold. Before stating this lemma, we need, however, the 
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following definitions: 
Definition 3.1. The boundary conditions (2.8c) fulfill the von Neumann condition if 

the roots Z(K) of the boundary characteristic function R(z, K) satisfy 

|Z(K),l 1 foralljKJ=1. 

Definition 3.2. The boundary conditions (2.8c) are dissipative if the roots of 
R(z, K) satisfy 

|Z(K)|<1 forallJKJ=1,K#1. 

Clearly, these definitions are analogous to those made for the basic scheme in 
Assumptions 3.2 and 3.3. Further, if the boundary conditions are dissipative, then 
they obviously fulfill the von Neumann condition. 

With the above definitions we can now state: 

LEMMA 3.1 (1st Main Lemma). (i) Inequality (3.5a) holds if either the basic scheme 
(2.8a) or the boundary conditions (2.8c) are dissipative. 

(ii) Inequality (3.5b) holds if any of the following is satisfied: 
(a) The basic scheme is two-level. 
(b) The basic scheme is three-level and 

(3.6) Q2(z= -1,iK=1)>0. 

(c) The boundary conditions are two-level and at least zero-order accurate as an 
approximation to Eq. (2.9). 

(d) The boundary conditions are three-level, at least zero-order accurate, and 
(3.6) is satisfied. 

(iii) Inequality (3.5c) holds if the boundary conditions fulfill the von Neumann 
condition and are either explicit or satisfy 

m 

T_ _1(K) 
= E Cj(- _lKj 0 0 for all O < I|K| 1. 

j=0 

This lemma follows immediately from Theorem 2.2 and Lemma 2.1 in [4]. Part 
(iii) of the lemma is associated with important observations on solvability by Osher 
[11]. 

With Theorems 3.1, 3.1' and Lemma 3.1 at hand, it is now a trivial matter to 
reestablish Examples 2.1-2.10 in [4], precisely as it was carried out using Theorems 
2.1, 2.1', 2.2 and Lemma 2.1 there. Thus we conveniently obtain the following five 
examples: 

Example 3.1 [4, Examples 2.1 and 2.2]. Stability holds for any basic scheme of the 
form (2.8a), with boundary conditions generated by either the explicit right-sided, 
dissipative Euler scheme: 

V'(t + At) = v>(t) + Xa[v,,,,(t) - vj(t)], 0 < Aa < 1, v = O,. .. ., r - 1, 

or by its implicit analogue: 

v,(t + At) = v>(t) + Xa[v+,1(t + At) - v,(t + At)], 

Xa > 0, p = 0,..., r - 1. 
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Example 3.2 [4, Exanrples 2.3 and 2.8]. We have stability for any two-level basic 
scheme of the form (2.8a), with boundary conditions determined by either horizontal 
extrapolation of order k - 1: 

vv(t + /\t) = E 1 )(-(1)I? v,+?(t + At), v = O,...,r - 1, 

or by the right-sided, dissipative, three-level Euler scheme: 

v^(t + LAt) = vv(t - At) + 2Xa[vv+?(t - At) - vv(t - A\t)], 

0 <Xa < , V = 0,..., r -1. 

Example 3.3 [4, Examples 2.4 and 2.5]. Stability holds for any dissipative basic 
scheme of the form (2.8a), with unitaryt boundary conditions generated by either 
oblique extrapolation of order k - 1: 

(3.7) vv (t + A t) E (y(-1)J+ vv+j[t -(j - l)A\t], v = O,.. ,r -1 

or by the second-order accurate Box-scheme: 

(3.8) v^(t + At) + vv+?(t + At) - Xa[vv+?(t + At) - vv(t + st)] 
= -v(t) + vv,?(t) + Xa[vv,+(t) - vv(t)], v = O, ..., r-1. 

Example 3.4 [4, Examples 2.6 and 2.7]. We have stability for any basic scheme of 
the form (2.8a) whose characteristic function satisfies 

(3-9) P (z = - 1, K = - 1) 0 0, 

with boundary conditions determined by the right-sided three-level, almost-dissipa- 
tive, weighted Euler scheme: 

(3.10) v^(t + At) = vv(t - At) + Xa[2vv+?(t) - vv(t + It) - vv(t - At)], 

O < Xa < 1 , v = 0, ..., r -1. 

We observe that, if the basic scheme is dissipative, then by Assumption 3.3(i), 

(3.11) P(z, K) =A O, I ZI >, 1 |K|I = 1, K =A 1; 
so (3.9) holds automatically. As noted already in Example 2.7 of [4], however, certain 
well-known nondissipative schemes satisfy (3.9) as well. This includes implicit 
unconditionally stable cases such as the unitary Crank-Nicolson scheme: 

vv(t + At) - Xa [v+l(t + At) - v,_j(t + At)] 
(3.12) pi 

V= v(t) + 4[vV+1(t) - vl_1(t) v = r,r+ 1,..., 

and the almost-dissipative backward Euler scheme: 

Xa 
(3.13) vv(t + At) - 2 [1V+1(t + At) - VV 1(t + /t)] = vv(t) 

v = r, r + 1, .... 

tThe boundary conditions are unitary if the roots z(K) of R (z, K) satisfy IZ(K)I = 1 for all IKI = 1. 
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Example 3.5 [4, Examples 2.9 and 2.10]. The Crank-Nicolson scheme in (3.12) 
with 0 < Xa < 1, and the backward Euler scheme in (3.13), are stable with oblique 
extrapolation at the boundary: 

(3.14) vo(t + A\t) = L (_J)(-)J+l Vj[t - ( j- )t. 

While Examples 3.1-3.5 include and extend many of the cases discussed in the 
recent literature (e.g., [1]-[8], [10], [12]-[15]), other interesting examples are not 
covered by Theorems 3.1 and 3.1'. For instance, Gustafsson et al. showed in 
Theorem 6.2 of [5] that the Leap-Frog scheme 

(3.15) V,(t + At) = v(t - At) + Xa[v,+I(t) - v-_(t)] 

0 < Xa < 1, v = 1,2,3,.... 
with the oblique boundary extrapolation in (3.14) provides a stable approximation. 
In this case, however, the characteristic functions are 

(3.16) P(z, K) = 1 - Z-2 - Xaz-1(K K-i) 

and 

(3.17) R(z, K) :1 ( )(-1)j1Z&jKJ = (1 - Zl1K) 

Therefore, i2(z, K) > 0 at all points (z, K) in (3.4), except for 

i2(Z = -1, K = -1) = IP(Z = -1 K = -1) I + R(z -1, K - -1) = 0; 

so (3.4) fails, and Theorem 3.1 does not imply stability. 
This counterexample-which shows that our criteria in Theorems 3.1 and 3.1' are 

sufficient but not necessary for stability-is not the only one. As we shall see, there 
are other well-known approximations for which Q2(z, K) does not vanish on the (z, K) 
domain in (3.4), with the exception of the particular point (z, K) = (-1, - 1). With 

this in mind, we shall prove in Section 4 the following alternative to Theorem 3.1, 
where the point (z, K) = (-1, -1) is treated separately. 

THEOREM 3.2 (2nd Main Theorem). Approximation (2.8) is stable if 

(3.18) aP(z, K) /P(Z, K) < 0 
Iza = -1 

and 

(3.19) C2(Z K)>O 
forall {|ZI=|K|= 1, (Z, K) + +(1,1)} U{IzI| 1,0 <IKI < 1}. 

Having Theorem 3.2, we follow the idea that led to Theorem 3.1', and split the 
(Z, K) domain in (3.19) into three disjoint sets in order to obtain: 

THEOREM 3.2' (Theorem 3.2 restated). Approximation (2.8) is stable if (3.18) holds 
and 

(3.20a) 2(z, K) > 0 for all Z| =|K| 1, K + 1, (Z, K) + (-1, -1), 
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Since the inequalities in (3.20b, c) coincide with those in (3.5b, c), then Lemma 3.1 
immediately yields: 

LEMMA 3.2 (2nd Main Lemma). Inequalities (3.20b) and (3.20c) hold under the 
hypotheses in parts (ii) and (iii) of Lemma 3.1, respectively. 

We deliberately choose not to apply part (i) of Lemma 3.1 to the inequality in 
(3.20a), since if the basic scheme or the boundary conditions are dissipative, then by 
Assumption 3.3(i) and Definition 3.2, we have either (3.11) or 

R(z, K) + 0, |Z >, 1, |K|= 1, K * 1. 

So 

Q(z = -1, K = -1) > O; 
and Theorems 3.2 and 3.2' lose any possible advantage they may have had over 
Theorems 3.1 and 3.1'. 

Example 3.6. Consider any basic scheme of the form (2.8a) whose characteristic 
function satisfies (3.18) as well as 

(3.21) P(z, K) : O, Z = K, |KI = 1, K +1; 

and determine the boundary conditions by oblique extrapolation as in (3.7). The 
boundary characteristic function, given in (3.17), satisfies 

(3.22) i2(z, K) > jR(Z, K) I > OS Z K. 
In addition, by (3.21), 

(3.23) i2(z, K) >I P(Z, K) I> O, Z = K, IKI = 1, +1. 

So (3.22) and (3.23) imply (3.19), and Theorem 3.2 yields stability. 
The inequalities in (3.18) and (3.21) are met by a number of well-known schemes, 

including: 
(a) The unitary Leap-Frog scheme in (3.15) (compare [5, Theorem 6.2]), whose 

characteristic function in (3.16) satisfies 

aP (Z, K) / aP(z, K) < 0 
aZ / K z=tc=-= Xa < 

and 

P(Z, K) = (1 - Xa)(1 - Kc2) + 0, Z = K, |K| = 1, K + _1 (O < Xa < 1). 

(b) The unitary, five-point Leap-Frog scheme (e.g., [8], [9]): 

v,(t + At) = v,(t - At) +4Xa [v,+1(0 - v,_1(01 
(3.24)3 

(.6 4 - V+2( - v-2(t)], 0<<a5a,< 3=,V3. 

Here, 

P(Z, K) 1 - Z-2 + kXaz-1(K - K1-)(K + K-' - 8); 

so 

aP(z, K) /aP(Z, K) -3 
az / aK z=c= l 5Xa 

and 
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(c) The almost-dissipative Lax-Friedrichs scheme (e.g., [10]): 

(3.25) v,,(t + At) = 2 [1v+(t) + vV1(t)] + 2VV+?(t) - Vv-l(t)] 

0 < Xa < 1, v =1, 2, 3, ...; 
for which 

(3.26) P(z,K) = 1 Z2 [K + KC +Xa(K - Ki)], 

so again, 

(P(Z .K) aP(z,K) -1 

(3.27) <iz ~ 
and 

P(Z, K) = 2(1 - Xa)(1 - Kc2) 0, Z = K, K| = 1 K * +1. 

We note that the stability question for these three schemes, combined with oblique 
extrapolation at the boundary, could not have been handled by Theorem 3.1 since 
here, 

Q(z = -1, K O l . 

Example 3.7 (compare [4, Example 2.7]). Take any basic scheme that satisfies 
(3.18), and let the boundary conditions be determined by the first-order accurate, 
weighted Euler scheme in (3.10). The boundary characteristic function is 

R(Z, K) = 1 - Z-2 - Xa(2KZ-1 - 1 - Z-2); 

so its roots Z(K) satisfy 

(3.28) Z(K = efl) = ei Xa + 
I()) 'D( ) /(Xa )2 + e-2i [1j - (Xa )2] Xa+1I 

Denoting p = (Xa )2, we obtain 

1(() 14 p2 +(I - p)2 + 2p(1 - p) cos24 < p2 +(1 _ p)2 + 2p(I - p) 1, 

? < X< 7 (O < p<l); 
hence by (3.28), 

(3.29) IZ(K= e(l A+ 
10()I<a 1 '<1, O<W<VT. 

Consequently, 

(3.30) R(Z, K) O ?, IZI >, 1j |KI 1 K /0 +1. 

By (3.28) again, 
Xa + 1 

Z(K = -1) =- Xa + 1; 

hence one root is Z(K = -1) = -1 and the other satisfies IZ(K = - 1)1 < 1; SO 

(3.31) R(Z,K= 1) 0 O, IzI 1,> Z -1. 
Collecting (3.30), (3.31) we find, therefore, that 

0 (Z, K) >f loR(Z K) I> ?, IZI K| K O 1, (Z, K) (- 

,a-nAd (3.2a) follows.i7, 
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Next, since 

i(Z = -1, K =1) > JR(z =-1,K =1) I= 4Xa > O, 

then Lemmas 3.1(ii)(d) and 3.2 imply (3.20b). 
Further, by (3.29), the roots of R(Z, K) satisfy 

IZ(K = efl I < 1, I 41I 7T; 

so our boundary conditions fulfill the von Neumann condition. Moreover, we easily 
verify that 

T_1(K) = 1 - XaK 0 O, O < |K| <, I (O < Xa < 1). 
Hence, Lemmas 3.1(iii) and 3.2 assure (3.20c), and by Theorem 3.2' we have 
stability. 

We recall that the Leap-Frog scheme in (3.15), the five-point Leap-Frog scheme in 
(3.24), and the Lax-Friedrichs schemes in (3.25), all satisfy (3.18); so they fit into the 
above example. 

We also point out that the stable approximation (3.25), (3.10) was mistakenly 
declared unstable in [4]. 

Example 3.8. Consider the almost-dissipative Lax-Friedrichs scheme in (3.25), 
with the Box-scheme boundary conditions in (3.8). As indicated in (3.27), the 
characteristic function in (3.26) fulfills (3.18). Also, the roots of P(z, K) satisfy 

Z(K- el) - cost + iXasint; 

so 

Z(K= -1) = -1 

and 

(3.32) |Z(K= efl 12 = COS24 +(Aa)2Sin2 < 1 O < j1< (O < Xa < 1). 

Thus, 

P(Z K) 0, IZ I? 1|, K|= 1, K 1 (Z, K) + (-1,-i); 

hence 

Q2(z, K) >I P(Z, K) I> 0, IZ I 1, |K| 1 K Z 1,(Z K) + (-1,-i) 

and we obtain (3.20a). 
In addition, Lemmas 3.1(ii)(c) and 3.2 immediately give (3.20b). Also, by (3.30) we 

get 

|Z(K = e'()l I 1<1 7T 

so the boundary conditions fulfill the von Neumann condition. And since 

ReT-1(Kc) = 1 + Re(K) + Xa[1 - Re(K)] + 0, IKI < 1 (O < Xa < 1), 

then Lemmas 3.1(iii) and 3.2 yield (3.20c), so Theorem 3.2' implies stability. 

4. Proof of Main Results. In [4] we proved 

THEOREM 4.1 [4, Theorem 2.1]. Approximation (2.8) is stable if 

Q.(Z,K) > O for IZI? 1O, <IK| I 1, (Z ,K) (1, 1). 
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From this we can easily obtain the following 
Proof of Theorem 3.1. Since by Assumption 3.2 the basic scheme fulfills the von 

Neumann condition, then the characteristic function in (3.1) satisfies 

P(Z, K) # O for Iz I > 1 IKI =l. 

Thus, we always have 

(4.1) 2(z, K) > , IZI > 1 IKI = 1, 

which, together with the statement of Theorem 4.1, completes the proof. El 
In order to prove Theorem 3.2, we again consider P(z, K). By Assumption 3.4, for 

each z with IjzI > 1, P(Z, K) has r + p roots K(z). These continuous roots, which 
play a major role in the stability analysis of Approximation (2.8), have the following 
separation property. 

LEMMA 4.1 ([4, Lemma 3.1]; compare [5, Lemmas 5.1 and 5.2]). For IzI > 1, the 
characteristic function P(z, K) has precisely r roots K(Z) with 0 < IK(Z)j < 1, p roots 
with IK(Z)J > 1, and no roots with IK(Z)J = 1. 

By this lemma, the roots K(Z) of P(z, K) split for IzI > 1 into two groups: r inner 
roots satisfying JK(Z)J < 1, and p outer roots with IK(Z)I > 1. Using a continuity 
argument, we observe that these groups of inner and outer roots remain well-defined 
for lzl >? 1 as well, where milder inequalities, IK(Z)J < 1 and IK(Z)J > 1, hold, 
respectively. Here, of course, if for zo with Izol = 1 we have IK(Zo)I = 1, then K(ZO) 

is an inner (outer) root of P(zo, K) if and only if, as z, IzI > 1, approaches zo, there 
exists an inner (outer) root K(Z) of P(z, K) that satisfies K(Z) -*> K(ZO). Since by 
Assumption 3.4, K = 0 is not a root of P(z, K) for IzI > 1, we summarize the above 
argument as follows: 

LEMMA 4.2 [4, Lemma 3.2]. For IzI > 1, the r + p roots K(Z) of the basic 
characteristic function P(z, K) split into r inner roots with 0 < IK(Z)I < 1 and p outer 
roots with IK(Z)I > 1. 

We can quote now the following stability criterion: 

THEOREM 4.2 [4, Corollary 3.1]. Approximation (2.8) is stable if and only if for 
every z with IzI > 1 and each corresponding inner root K(Z) of P(z, K), 

Q (z, K (Z)) -P (Z, K (Z)) I + I R(Z, K(Z)) I> ?. 

We shall also need 

LEMMA 4.3. (i) K = 1 is not an inner root of P(z, K) for z = 1. 

(ii) If (3.18) holds, then K = -1 is not an inner root for z = -1. 

Proof. (i) The first part of the lemma is precisely the content of Lemma 3.3 in [4]. 
(ii) If P(z = -1, K = -1) s 0, then there is nothing to prove, so suppose that 

(4.2) P(z = -1, K = -1) = 0. 
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By (3.18), 

(43) ~~~~~aP(Z, K) 
()aK Z=K= ; 

thus, having (4.2) and (4.3), we employ the implicit function theorem and find that 
in some neighborhood N of z = -1, the characteristic equation 

P(Z, K) = 0 

has a unique differentiable solution K = K(z) satisfying 

(4.4) K(z = -1) = -1. 

Since 

P(z, K(z)) 0 forz E N, 

then 

(4.5) 3P(z, K) 3 P (Z,K) dAZ(z) 0 
az aK dz Z=K= 

Hence, (3.18) and (4.5) imply 

(4.6) dk(z) - aP(Z, K) / P(Z, K) 
(4.6) dz==laz / a - > o. dz zaZ / K Z=K 

By (4.4) and (4.6), therefore, for z = -1 - E with sufficiently small - > 0, a Taylor 
expansion gives 

K((z= -1-)=K(Z= -1)- E d (z) + O(E 2) dz Z=~- 

= -1 - yE + O(E 2) < -1. 

Thus, for z in some left real neighborhood of -1 we have 

(4.7) IK(Z)I> 1. 

Since K(z) is a continuous function in N, then by Lemma 4.1 the inequality in (4.7) 
holds for all z E N, lzl > 1. That is, K(z) is an outer root of P(z, K) for z E N, 
z > 1. Since in addition, 

K(Z) -- - 1, 
Z- -1 

then by definition, K =-1 is an outer root for z = -1, and the proof is complete. 
El 

Proof of Theorem 3.2. By (3.18) and Lemma 4.3, K = 1 and K = -1 are excluded 
as inner roots of P(Z, K) for z = 1 and z = -1, respectively. Thus, in view of 
Theorem 4.2 and Lemma 4.2, approximation (2.8) is stable if 

(4.8) Q(z, K) > 0 for all Iz| > 1, 0 < IK I < 1, (Z, K) ? + (1, 1). 

Since the basic scheme fulfills the von Neumann condition, then, as shown in the 
proof of Lemma 4.1, we automatically have (4.1). But (4.1) combined with the 
hypothesis in (3.19) implies (4.8), and stability follows. E 
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